Efficient Progressive Radiance Estimation Engine Architecture and Implementation for Progressive Photon Mapping

نویسندگان

  • Ching-Chieh Chiu
  • Yu-Shu Lin
چکیده

We propose a progressive radiance estimation engine (PREE) hardware architecture to accelerate the processing of the progressive photon mapping with satisfactory graphic quality. The presented PREE architecture consists of four progressive radiance estimation units (PREUs), approximate full task schedule-oriented hit-point update operation controller (AFTSO-HpUOC) and approximate data-independent scheduleoriented radiance evaluation controller (ADISO-REC). The PREUs accelerate the radiance estimation computation by a pipeline technique and share and configure the hardware resource for hit-point update operation and radiance evaluation. Through AFTSO-HpUOC and ADISO-REC, the data can be efficiently dispatched to achieve better parallelism and the data dependence can be alleviated within the four PREUs, respectively. The core area of the proposed PREE architecture implemented in TSMC 90-nm CMOS process is 1.78 mm2. According to the post-layout simulation results, the implementation achieves 496.79 million hit-point update operations per second (MHpUO/s) and consumes 184 mW at 125 MHz for Cornell box with three balls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progressive photon mapping for daylight redirecting components

Daylight redirecting components (DRCs) are characterised by complex transmissive and reflective behaviour that is difficult to predict accurately largely due to their highly directional scattering, and the caustics this produces. This paper examines the application of progressive photon mapping as a state of the art forward raytracing technique to efficiently simulate the behaviour of such DRCs...

متن کامل

Frequency based Kernel Estimation for Progressive Photon Mapping Supplementary Material

We present an extension to Hachisuka et al.’s Progressive Photon Mapping (or PPM) algorithm [Hachisuka et al. 2008] in which we estimate the radius of the density estimation kernels using frequency analysis of light transport [Durand et al. 2005]. We predict the local radiance frequency at the surface of objects, and use it to optimize the size of the density estimation kernels, in order to acc...

متن کامل

Efficient visualization of lit automotive tail lights

We present a new method for estimating the radiance function of lit automotive tail lamps. The method is based on Jensen’s photon mapping algorithm. In order to capture high angular frequencies in the radiance function, we incorporate the angular domain into the density estimation. However, density estimation in position-direction space makes it necessary to find a tradeoff between the spatial ...

متن کامل

Gradient-Domain Photon Density Estimation

The most common solutions to the light transport problem rely on either Monte Carlo (MC) integration or density estimation methods, such as uni& bi-directional path tracing or photon mapping. Recent gradient-domain extensions of MC approaches show great promise; here, gradients of the final image are estimated numerically (instead of the image intensities themselves) with coherent paths generat...

متن کامل

Comparison of three Estimation Procedures for Weibull Distribution based on Progressive Type II Right Censored Data

In this paper, based on the progressive type II right censored data, we consider estimates of MLE and AMLE of scale and shape parameters of weibull distribution. Also a new type of parameter estimation, named inverse estimation, is introdued for both shape and scale parameters of weibull distribution which is used from order statistics properties in it. We use simulations and study the biases a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018